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STATE OF STRESS AND STRAIN OF A SMALL NEIGHBOURHOOD OF THE APEX OF A WEDGE 
FOR A PHYSICAL NON-LINEARITY AND DIFFERENT BOUNDARY CONDITIONS* 

V.M. ALEKSANDROV and S.A. GRISHIN 

Three plane strain problems of a small neighbourhood of the apex of a 
physically non-linear incompressible wedge are investigated by the 
Cherepanov-Rice-Hutchinson method using a non-linear differential equation 
for the Airy stress function: Problem 1 - one face is free, and a smooth 
contact condition is given on the other; Problem 2 - one face if free, 
and a flexible inextensible cover plate is glued to the other; Problem 3 
- one fact is free and the condition of adhesion to a stiff flat stamp 
is given on the other. Numerical results are presented that illustrate 
the influence of the degree of non-linearity of the governing relationships 
and the wedge aperture angle on the solution. The method is also applied 
to the stream function which enables us to formulate an analogy between 
different plane problems and affords the possibility of extending it to 
the axisymmetric case. In many problems of the mechanics of a deformable 
solid, the investigation of the asymptotic form of the solution near an 
angular point of a domain occupied by a body plays a fundamental role. 
In the elastic case this question has been studied quite broadly and an 
extensive literature exists. The situation is more complicated if the 
governing relationships are non-linear. The majority of papers deal only 
with the case of a crack. This paper attempts to fill this gap somewhat. 

1. We consider the problem of the equilibrium of a wedge with apperture angle a from 
a material subjected to the law 

a,= ACT,,“‘, Ekk = 0, isij= o,,e&,, A, m = con&, m > 1 (1.1) 

(J, = 6-'1: [(ol - a# + (c, - a# + (c3 - cl)" + 60,,~ + 
60,,~ + 6c,,V: 

EU = 6"'~ [(e, - Q.)" + (Q - es)" + (~3 - .Q)~ + 6e$+ 6e,s2 tL 6es,21'/* 

Here SgJ are the components of the stress deviator in a certain orthonormalised basis, 

% is the stress intensity, QJ are the components of the strain or strain rate tensor 
depending on the specific model: if the problem of non-linear steady creep is considered, then 

QJ is the rate, if an elastic-plastic tension-compression diagram is described by (l.l), 
generally speaking, then $J are tensor components of small strain. There is no need to make 
the physical meaning of eiJ specific; by virtue of a well-known analogy the fundamental 
equations are written identically, and consequently, we will henceforth call ail the strain 
for brevity, and a,, the strain intensity. 

We assume the strain to be planar. In polar coordinates with centre of the wedge apex 
we have 

*Prikl.Matem.Mekhan.,51,4,653-661,1987 
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The equilibrium equations and Cauchy relationships 

~~:r+~(~~--*)++~rb.*-O 

c,B,? ++Ja,a+$O,*==O 

5 = Ur, r9 

(1.3) 

(1.4) 

should be satisfied everywhere in the domain (the subscript without a comma corresponds to a 
vector or tensor component, while the subscript after a comma dentoes the operation of dif- 
ferentiation with respect to the corresponding coordinate). 

We introduce the Airy stress function @ by means of the usual formulas 

(1.5) 

Expressing the strain components from (l.l), (1.21, (1.5) in terms of @ and substituting 
these expressions into the single compatibility condition for the plane problem 

1 
f OMrr + f ar,66 - ~a,,, - -$(ra,0,6),~ = 0 t1.6) 

we obtain a certain partial differential equation in the Airy function whose solution under 
given boundary conditions determines the stress and strain fields completely. 

Since only the behaviourofthe solutionina small neighbourhoodofthe apex is of interest, 
we will seek the Airy function in the form 

0 (r, 6) = Qr% 6% (1.7) 
where Q and s are unknown real constants, and v is an unknown function of the variable 6. 
This latter representation is used extensively in investigating the solution of problems near 
an angular point. It can be treated as the principal term of the asymptotic expansion in 
powers of the variable I. From the practical viewpoint, it simplifies the problem considerably 
by separating variables in the compatibility equation. The scheme taken with assumption (1.7) 
iscalledtheCherepanov-Rice-Hutchinsonmethodfromthenamesoftheauthorsof/l-S/, who first 
used this method in problems of cracks in a medium being hardened according to a power law /6/. 

Thus by assuming the validity of relationship (1.7), we have from (1.5), (1.1) and (1.2) 

(JV (rt 8) = QP’~~J (a) (1.8) 

ii, = rv, (cp” + s (2 - s) (p)2 + (1 - s)2 r++l'/. 

a,=scp + 4, Li*=s(s- l)cp, ?i~;s=(1-s)cp' 

eiJ (r, 6) = AQmrm(8-%iJ (19) (1.9) 

b=-4=a:-'.lja(cp"+s(2-s)cp), Br*= I?$"(1 - s)cp' 

Evaluating the necessary derivatives of the strain tensor components and substituting 
them into the compatability condition (1.6) , we arrive at the following fourth-order ordinary 
differential equations in the function (p(6) defined in the segment lO,al in which the constant 
s occurs as a parameter 

The natural requirement of finite strain energy in the neighbourhood of an apex of 
arbitrary radius p imposes the constraint 

-&m(S-2)[m(s-2)+2]}{~~-~.'/*(~~+s(2-s)cp)~t (1.10) 

2(s- i}[m(s - 2)+ 1]@:-rcp'}'=o 

P 

s at~'Jil'dr<=Q; S>a (Ml) 
0 

We now consider the boundary conditions. We will consider the wedge face 6 = a as load- 
free, which, taking account of (1.91, is written as 

cp (a) = $(a) = 0 (1.12) 
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We require satisfaction of one of the following three conditions on the other wedge face, 
and we define three problems in this connection. 

Problem 1. A rigid stamp with a flat absolutely smooth base acts on the fact 8 = 0 
u+ (r, 0) = con&. c+ (r, 0) = 0 (1.13) 

It is seen /J/ that (1.13) is equivalent to the condition 

cp' (0) = cd" (0) = 0 (1.14) 

Problem 2. A cover plate that does not resist bending but is rigid in tension is glued 
to the face 0 = 0 

u, (r, 0) = const, cv (r, 0) = 0 (1.15) 

The equivalence of 11.15) to the following requirement results from (1.9): 

cp (0) = (p" (0) = 0 (1.16) 

Problem 3. A flat rigid stamp adheres to the face 6 = 0 

u, (r, 0) = const, t4+ (r, 0) = C,r + CZ, Cl, CZ = const (1.17) 

The first equality in (1.171, the first relationship in (1.4) and (1.9) yield 

V" (0) + s (2 -s) cp (0) = 0 (l.i8) 

Taking account of the second equality in (1.171, we have from the first and third Cauuhy 
relationship (1.4) that (%e,.& - e,,a = 0 for 6 = 0. Differentiating and substituting the 
necessary expressions (1.9), here, using (1.18), we obtain after some reduction 

cpm (0) - cp' (0)14 (m (s - 2) + I)(1 - s) - s (2 -s)l = 0 (1.19) 

Thus, conditions (1.17) are equivalent to (1.18) and (1.19). 
The left-hand sides of (1.10) and all the conditions (1.12), (1.14), (1.16), (1.18) and 

(1.19) are homogeneous functions in cp and the derivatives of cp with respect to 6~ hencethe 
problems allow non-trivial solutions only for particular valuesof the parameter s. Therefore, 
in additiontothe function ~(6) not identically equal to zero, the least real and simple 
eigennumber s satisfying the energy estimate (1.11) must be found. 

The problems formulated can be solved by the method of adjustment as follows. By using 
the homogeneity, we obtain normalization by requiring ‘p(O)= --i in problems 1 and 3 and 
cp' (0) = -1 in problem 2. We thus obtain the third condition at the left end of the segment 
of integration. Now giving some value to the parameter s and the fourth condition at zero, 
we can solve the Cauchy problem numerically by the Runge-Kutta method. At the point 8=o 
we will here obtain certain numbers a = ~(a), b = q’(a). Applying Newton's method to the 
function thus determined, it is easy to achieve a = b = 0 and thereby to satisfy condition 
(1.12). The inequality (1.11) and the requirement that the s found would actually be the least 

of the numbers satisfying it are confirmed directly. 

2. On the basis of the abwe, a series of calculations was carried out. Problems about 
cracks from /4, 5/, obtained in the special case of a= n upon requirement of normalization 
were used as a test for the program. The results of the computations are represented partially 
in Figs.l-4. 

Fig.la showsgraphsof the dependence of the singularity index s on the wedge a aperture 
angle for several m in problem 1. since the conditions of a smooth stamp (1.14) are identical 
to the synnnetry conditions, this can be utilized to check the calculations. Known particular 
results are isolated by points on the graphs. For a= n the formula /l-4/ 

8 = (Zm + i)/(m + i) (2.1) 

holds over the whole real range of variation of m. 
The value a= n/2 corresponds to the problem of the tension or compression of a half- 

plane by forces parallel to its boundary. Independently of m the stresses should obviously 
be bounded in this case; consequently, ,= 2. The point extracted on the curve for m=3 

corresponds to the value I= 1.775 mentioned in /4/ as an illustration of the possiblity of 
solving the problem for a#n by the method utilized here. The curve for m= i can be 
obtained as a result of solving the algebraic equation. The range of variation of m is taken 
from tables /8/. 

To answer the question of why s is the least of the numbers satisfying (1.111, numerous 
attempts to construct a solution with s less than in Fig.la were made by using the same program, 
but for other starting parameters in addition to the reasoning of continuity during passages 
to the limit a-n. a-n/2, m-1. They were not successful: the Newton process either converged 
to the calculated values or diverged. Figs.1 b-d show graphs of the angular components of the 
local stress field. The numbers on the curves correspond to the components thus: I- %(*)t 2- 
a,* (8). 3 - 6, @). 4 - a* (6!. Case b corresponds to a homogeneous field for a= n/2,*= 2.~= -cm'.*. 
There are graphs for m= 3,ar:= 3nl4 (Fig.lc) with the normalization ~(0) = i in /4/. Fig.ld 
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shows graphs for m- 13,~~ =3nl4. In this case s -2 1.933, q" (0) = 1.083. 
Let us consider problem 2 (Figs.2 and 3). Fig.2 is analogous to Fig.la. The isolated 

points for a= n correspond to values of s given by (2.1) /5/. This is the only case when 
the values of s in problems 1 and 2 agree. As adgcreases, the eigennumber of problem 2 grows, 
and more rapidly than in problem 1. Finally, a certain critical value a = a* is reached 
when s= 2 and the stresses become bounded. This part of the figure is most interesting; 
it is reproduced on a larger scale. 

Unlike problem 1 the magnitude of the critical angle a* depends substantially on m. 
The greater the value of m the smaller a* becomes. In the linear case the value of a* is 
found easily from the equation tan2a* = 2a*. To determine a* for m+i it is possible to set 
S= 2 at once in (1.10). Then the order of the equation is reduced to one, and by a chain 
of substitutions it is transformed into a Riccati equation and reduced to a Bessel equation 
for functions of the order of v=[m-1)/(2m). Execution of the reverse chain of substitutions 
results in a non-trivial relationship between 'p','p" and three free constants containing 
modified Bessel functions of the first kind of orders Y and v-i; consequently, the problem 
of finding a* for which the boundary conditions can be satisfied is more complicated than the 
original one. 

a) b) 
cl.- -- 7 

I I 
0.6 -- I 

I 

CL8 0.8 

0 92 

-0.8 -1 
0 0 

a) b) 

cl d) 

Fig.3 Fig.4 

Fig.3 shows the angular local stress field components in the problem under consideration. 
The numbering of the curves is analogous to Fig.1. For m=i the solution is known. There 
are graphs for a=rr,m=3 and m= 13 in /S/. The following cases are represented in Fig.3 
a - m = 13, 8 = 1.854; b - m = 7, P= 1.861; C -in=i,s=i,333;d--=2,s=1.563. The appearanceofa 
break in the graph of ii,(e) of part c forced us to oonfine ourselves to the range a < 31112. 

Unlike problems lend 2, problem 3 is new in the non-linear case and consequently, more 
interesting. The incompressibility of the material and the non-linearity of the law of its 
behaviour (1.1) enabled us to hope for no stress oscillation near the angle and enabled us to 
investigate the asymptotic form by proceeding according to the preceding scheme. There was 
no heuristic reasoning relative to the quantity #(a) for m>i. It turned out to be convenient 
to select a=%/4 as the initial value. 

The results of calculations are represented in Fig.4. Fig.la is analogous to Figs.la and 
2a. It is seen that even for a= 3nl4 the calculated values of s are close to the values 
given by (2.1) while as a tends to IT they approach them still more. However, the case 
a=n is not achievable, the tangents to the graphs G (a) and a,@) become vertical at 
the point it= s (Fig.4d, where m=4, *= 1.8). it is required to seek the asymptotic form in 
a form different from (1.7). For m= i,a= n conditions (1.12), (1.18) and (1.19) and 
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normalization do not permit extraction of a unique solution. 
For a = n/4 all the curves of Fig.4a intersect at one point s=Z; therefore, as in 

problem 1, a single critical angle a*=& exists for all m. The pattern of the stresses 
in this case is displayed in Fig.4b. The stress intensity (curve 1) is constant and equal to 
two, Eq.(l.lO) becomes linear, and the boundary value problem is solved exactly: cp=sin26--il. 
Such a function corresponds to a homogeneous stress field on areas perpendicular to the free 
face of the wedge and the deformation plane, the normal stresses are Z,G--4, the tangential 
stresses are 3%~ 0 and on areas parallel to the free surface t,= a,=% Setting m==i,s=2 
in the initial problem, it can be seen that the value of the critical angle found by the 
program is minimal. The case m= 13,s= 1.933 is shown in Fig.4~. 

3. The asymptotic forms of the desired fields near an angular point can be constructed 
for an incompressible material by the following method that differs from the one examined in 
Sect.1. Substituting the first two Cauchy relations from (1.4) into the incompressibility 
condition, multiplying by I‘ and grouping components we obtain a first-order partial differen- 
tial equation 

(ru,),, f UlY.6 = 0 (3.1) 
Without loss of generality, it can be satisfied by introducing the ordinary stream 

function Y(r,+) such that 

&V=-Ytr, u,=r-"Y>, (3.2) 

The strain components are expressed in terms of Y thus 

We rewrite the equilibrium Eq.tl.3) by extracting from the operators of the left-hand 
side the deviator and global components 

Differentiating the first equation in (3.4) with respect to f),we obtain 

ff,r#=-BB1*~-_--Sr r,_I 
r Sr%BB-&%,6-Sa,*) (3.5) 

Multiplying the second equation in (3.4) by I, differentiating it with respect to r and 
using (3.51, we will have 

0=5,~rBz,t-B1,*=3S~a..+ (3.6) 

+ S&E, -t- r&f),rr +S~,bl.-SI,r*-tSrd,bO-fS,,d 

The right-hand side of this last equation contains derivatives only of the stress 
deviator components which are expressed from the governing relationships (1.1) and (1.2) in 
terms of the strain, and this in turn in terms of Y from (3.3). Therefore, to find all the 
unknown quantities, it is again required to seek just one function from a fourth-order equation 
under certain boundary conditions. 

by analo,gy with (1.7), we seek the stream function Y fn the form 

y (r,9) = Pr'*(@), P,t = const 
We then obtain from (3.7), (3.2) and (3.3) 

(3.7) 

(3.8) 

Solving (1.1) for the stress and using (3.8), we will have 

(3.9) 
(3.10) 
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Noting that 

w,, = r-‘p (t - 2) iv, w,,, == r-p (t - 2) 111 (t - 2) - IJ IV (3.1 1) 
w,* = ‘!z (p - 1) E’WW, w&* = ‘!a (p - 1) [E”P -/- 

‘iz (p - 3) E-E-“] w 
w ,re = V2Pp fp - I) (t - 2) E’E-‘W, E siz Fu2 = (t - 

1)%#‘2 --~ x”, y. 55 F,, 

and evaluating the necessary derivatives of the stress deviator components and then substi- 
tutxng them into (3+6), we obtain a non-linear fourth-order ordinary differential equation 
in the function q(8) containing t as a parameter 

P 0 - 2)Il (t - 2) + 21 x - '/z(p - 1)[E"IF + f/z (!A - (3.12) 

3) E’ZE-21 x - x’ (IL - 1) E’E-’ - f + (p - 1) (1 - 

t)E’E-‘q’ (p (t - 2) + 1) + 2 (1 - t)(p (t- 2) + I)$'- 0 

Without expanding the notation we note that 9"" occurs in f3.12) in terms of E" and X". 
Let us obtain the boundary conditions. This is done most simply for the coupled stamp. 

In a coordinate system coupled rigidly to the stamp the conditions of total coupling along 
the faces 9 = a +(?,a)= 0, ue(i‘.a)= 0 are equivalent by virtue of (3.8) to the requirement. 

11,(a) = $' (a) = 0 (3.13) 

If a stamp with a smooth flat base acts on the fact 6 = 0, the condition @(r,O)= 0 
is equivalent to 11,(O)= 0 and the requirement ~,~(r,O)=t 0 means that 

** (0) + t (2 - $19 (0) = 0 (3.14) 

Together this yields 

9 (0) = $J" (0) = 0 (3.15) 

Tbederivationofthe following condition turns out to be somewhat more complex. We 
assume that a flexible inextensible coverplate glued to the face 6 = 0 is loaded by a 
uniform pressure p = const. The equality ur(rt O)= 0 is equivalent to the following: 9'(O)= 
0. Differentiating the equality oe (7,O) = p, we obtain that as,? = Se,, + a,, = 0 for 6 = 0. 
Since it follows from (3.10) that s e,r = i--'p (t - 2)(1 -- t)$W, and o,? is expressed in terms of 
the derivatives of the stress deviator components from the first equilibrium ?~q.(3.4), then 
by using (3.10) and (3.l.11, we will have 

q"'(O) - +' (0) 14 (IL (t - 3) + I)(2 - t) - t(2 - t)J = 0' (3.16) 

Together with the first requirement this means that 

$F (0) = *' (0) = 0 (3.15) 

Finally, the last condition. The wedge face 6 = 0 is loaded by uniform pressure 

% (r., 0) = p, % (770) = 0. This is necessary and sufficient to satisfy (3.14) and (3.16). 
The estimate of t from power considerations analogous to (1.11) results in the inequality 

t> 2!-+ + 1) (3.18) 

Apart from the renotation q- 9% t-S, p * m the conditions (3.131, (3.151, (3.171, 
(3.14) and (3.16) agree with (1.121, 11.161, (1.141, (1.18) and (1.191, respectively. In 
exactly the same manner Eq.(3.12) can be reduced to the form (1.10) with the same renotation. 
Only the meaning of the quantities inal.lthe formulas changes. This enables us to formulate 
the following analogy. 

We assume that the boundary value problem (1.10) is solved with the conditions (1.18) 
and (1.19) at zero and (1.12) at 6 = a, i.e., the eigenfunction f(e) and eigennumber z 
satisfying (1.11) are found. Two mechanical problems are thereby actually solved. If f is 
treated as an angular component of the Airy function (faa (P,.z~s), problem 3 of Sect.1 is 
solved: formulas (1.8) and (1.9) completely define the-state of stress and strain bf the apex 
of a wedge from a material subject to the law e, = Ac,,~ for the coupled face 6 = 0 and the 

free face 6 = a. According to (l.Q), (1.8) and (1.4) the desired fields behave thus: 

U,- pwm, e,,- rww, u,,-rE-a, r-0 (3.19) 

If f is considered to be an angular component of the stream function (f=& Z= t) then 
by (3.8) and (3.10) the local solution of the problem of plane strain of the apex of a wedge 
from a material with a mirror-symmetric diagram is determined 

E, = Aql p = m-1 (3.20) 

for the free face 6 = 0 and the coupled face 6 = a. Here 



515 

ui - r*-‘, t-2 
eij-’ t U<jii--' wcq r-+0 (3.21) 

Apart from a change in the faces , the identical problem is solved for two different 
materials. 

If the boundary value problem (1.101, (1.14) and (1.12) is solved, then in addition to 
problem 1 of Sect.1 for a "smooth stamp-free boundary*, the problem of a "coverplate-coupled 
stamp" is also solved for the material (3.20). The boundary value problem (l.lO), (1.16) and 
(1.12) corresponds both to problem 2 of Sect.1 of the "cover plate-free boundary" and to the 
problem of a "smooth stamp-coupled stamp" for the material (3.20). 

In the special case of an elastic incompressible material m = p = 1, the governing 
relationships (1.1) and (3.20) are identical. Eqs.(l.lO) and (3.12) have identical form 
(the notation of Sect.31 

’ Ip’“’ f 2 (p - 2t+2)g”+t~(z--t)~tp=o (3.22) 

The boundary conditions agree in pairs. The analogy becomes still more complete. 
Combining the conditions of the designated four typss differently at the different wedge 

faces, ten different problems can be obtained. Three of them, studied in Sects.1 and 2 are 
encountered most often. The sams applies for the constraint m> 1 on the form of the 
governing relationships. *he analogy formulated enables one to halve the amount of work 
required to investigate the general case for arbitrary m. It is still more important that the 
approach based on utilizing the stream function is carried over practically without change to 
the axisymmetric problems of a stamp and a cone. Construction of the asymptotic form near 
the edge for the solution of the axisyuraetric problem of a stamp would enable us to estimate, 
in particular, the influence of tension-compression of near-lying fibres parallel to the edge 
on the local fields. 
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